Reaction of *N*,*N*-dimethylaniline with 1,5-diferrocenyl-3-methyl-2,4-trimethylenepenta-1,4-dienyl carbocation. A nonsynchronous cationic cyclodimerization mechanism in conjugated dienes

Elena I. Klimova,*a Tatiana Klimova Berestneva,a Marcos G. Martínezb and Lena Ruíz-Ramireza

^a Department of Chemistry, National Autonomous University of Mexico, CP 04510 México, México. Fax: +5 25 622 5366; e-mail: klimova@servidor.unam.mx

Reaction of the 1,5-diferrocenyl-3-methyl-2,4-trimethylenepenta-1,4-dienyl tetrafluoroborate cation with *N*,*N*-dimethylaniline affords a mixture of products from the alkylation of *N*,*N*-dimethylaniline at the *para*-position by monomeric and linear and cyclic dimeric carbocations along with linear and cyclic dimers of 1,3-diferrocenylmethylene-2-methylenecyclohexane. These results confirm and illustrate a nonsynchronous cationic cyclodimerization mechanism for ferrocenylbuta-1,3-dienes.

The idea that a stepped mechanism is involved in the cationic cyclodimerization of conjugated dienes was put forward by Hoffmann et al. 1-3 in their study on the cyclodimerization reaction of 2,4-dimethylpenta-1,3-diene in the presence of acids. However, up to now this mechanism has not been unambiguously confirmed, although early experimental results are in agreement with it.4-6 Some recent results7-16 on the method of synthesis and on the chemical and structural properties of ferrocenyl-containing 1,3-dienes shed additional light on the reaction mechanism. The methylferrocenyl cations are deprotonated during interaction with nucleophiles (*N*,*N*-dimethylaniline, pyridine) resulting in the formation of intermediate ferrocenyl-1,3-dienes followed by their subsequent cationic cyclodimerization. The proposed stepped cationic cyclodimerization mechanism was confirmed by the presence of ferrocenyl-1,3-diene dimers with a terpenoid or condensed polycyclic structure, as final products of the reaction. The presence of the intermediate linear dimeric ferrocenylallyl cation was confirmed in just two cases: in the cationic cyclodimerization of 2-methylene-3-ferrocenylmethylenecamphane and in 3-methylene-2-ferrocenylmethylenequinuclidine. 10,11,14 In our opinion, the absence of cyclic dimers in the above cases could be explained by steric hindrance in the camphane and quinuclidine fragments and/or by electronic factors that do not favour the intramolecular alkylation of the dimer cation 1, which would result in the less stable cation 2 (Scheme 1).

However, it is worth noting that we could never prove the presence of cyclic intermediate cations, although we obtained cyclic dimers as final products, which indirectly indicates their presence in the intermediate steps of the reaction.

In this work, we studied the reaction of the 1,5-diferrocenyl-3-methyl-2,4-trimethylenepenta-1,4-dienyl tetrafluoroborate cation **1**, which has not been described previously, with *N*,*N*-dimethylaniline. Carbocation **1** is of interest, because at all stages in the cationic cyclodimerization, it should form the stable dimeric (linear and cyclic) allyl carbocations. ^{17,18} One could therefore expect that these carbocations could be observed in the reaction mixture by reaction with *N*,*N*-dimethylaniline. The final products of this reaction could prove the simultaneous existence of these cations and the stepped mechanism of the cationic cyclodimerization.

In order to verify the validity of the above suggestion we obtained the tetrafluoroborate of carbocation 3 from the

FcHC
$$\stackrel{O}{\longrightarrow}$$
 CHFc $\stackrel{Me \ OH}{\longrightarrow}$ CHFc $\stackrel{Et_2O \cdot HBF_4}{\longrightarrow}$ $\stackrel{Et_2O \cdot HBF_4}{\longrightarrow}$ $\stackrel{Et_2O \cdot HBF_4}{\longrightarrow}$ $\stackrel{CHFc}{\longrightarrow}$ $\stackrel{CHFC}{\longrightarrow}$

1 by treatment with HRE

corresponding carbinol **4** by treatment with HBF₄ etherate.^{7,12} This salt is rather stable upon storage under standard conditions (remains unchanged at room temperature for 10–12 h) (Scheme 2).[†]

Indeed, treatment of salt 3 with N,N-dimethylaniline[‡] results mainly in the formation of products $6-10^{\$}$ from the alkylation of N,N-dimethylaniline at the para-position by all allyl (monomeric and dimeric) cations present in the equilibrium reaction mixture (Scheme 3).

In addition, minor quantities of the linear and cyclic dimers 11, 12 and 13 were isolated from the reaction mixture (Scheme 4).

 † 1,5-Diferrocenyl-3-methylpenta-1,4-dienylcation tetrafluoroborate 3: yield 87%, black crystals, mp 221–230 °C (decomp.). 1H NMR (CD₂Cl₂) δ : 2.13 (s, 3H), 2.71 (t, 2H, J 6.2 Hz), 3.49 (m, 4H, J 6.2 Hz), 5.10 (s, 4H, C₅H₄), 5.50 (s, 4H, C₅H₄), 5.31 (s, 5H, C₅H₅), 5.32 (s, 5H, C₅H₅), 8.33 (s, 2H). Found (%): C, 60.59; H, 5.24; F, 12.96; Fe, 19.16. Calc. for C₂₉H₂₉BF₄Fe₂ (%): C, 60.46; H, 5.07; B, 1.88; F, 13.20; Fe, 19.39.

2,6-Diferrocenylmethylene-1-methylcyclohexanol **4**: yield 78%, yellow crystals, mp 156–157 °C. ¹H NMR (CDCl₃) δ : 1.55 (s, 3H), 1.65 (s, 1H, OH), 2.21 (m, 2H, J 10.8, 4.2 Hz), 3.35 (m, 4H, J 10.8, 4.2 Hz), 4.1 (s, 10H, 2C₅H₅), 4.18 (s, 4H, C₅H₄), 4.27 (s, 2H, C₅H₄), 4.31 (s, 2H, C₅H₄), 6.42 (s, 2H). Found (%): C, 68.64; H, 6.12; Fe, 21.93. Calc. for C₂₉H₃₀Fe₂O (%): C, 68.80; H, 5.98; Fe, 22.06.

* N_i -dimethylaniline (0.72 g, 6 mmol) was added to a solution of compound 3 (2.30 g, 4 mmol) in anhydrous CH₂Cl₂ (70 ml) with constant stirring in a dry inert atmosphere. The mixture was stirred at room temperature for 1 h, then the excess of N_i -dimethylaniline was washed out with water, a 1% solution of HCl and water again. The organic layer was separated and dried with Na₂SO₄. The solvent was distilled off in vacuo. The residue was chromatographed on a column filled with N_2 (III Brockmann activity). The following four fractions were obtained:

Hexane as the eluent: fraction I (0.21 g); fraction II (0.56 g). Benzenehexane (1:2) as second eluent: fraction III (1.02 g). Benzenehexane (4:1) as third eluent: fraction IV (0.80 g). Then each fraction was chromatographed on SiO_2 plates to obtain: from fraction I, 0.137 g (7%) of dimer 11 (hexane, $R_{\mathrm{f}}=0.7$); from fraction II, 0.098 g (5%) of dimer 12 ($R_{\mathrm{f}}=0.63$) and 0.195 g (10%) of dimer 13 ($R_{\mathrm{f}}=0.54$, benzenehexane 1:2); from fraction III, 0.29 g (12%) of compound 7, ($R_{\mathrm{f}}=0.51$) and 0.49 g (20%) of compound 6, ($R_{\mathrm{f}}=0.38$, benzenehexane 2:1); from fraction IV, 0.13 g (6%) of 10 ($R_{\mathrm{f}}=0.41$) and 0.20 g (9%) of 9 ($R_{\mathrm{f}}=0.35$) and 0.31 g (14%) of 8 ($R_{\mathrm{f}}=0.28$, benzenehexane 3:1).

^b Institute of Chemistry, National Autonomous University of Mexico, CP 04510 México, México

All reaction products were separated by column chromatography on ${\rm Al_2O_3}$ and then by preparative TLC on ${\rm SiO_2}$ and characterised by elemental analysis data and ${}^1{\rm H}$ and ${}^{13}{\rm C}$ NMR spectroscopy.

According to the NMR data the dimerization and cyclodimerization occur diastereoselectively. Compounds 8-13 were

 $^{\$}$ I-p-Dimethylaminophenylferrocenylmethyl-3-ferrocenylmethylene-2-methylcyclohexene $\mathbf{6}$: orange crystals, mp 178–179 °C. ¹H NMR (CDCl_3) δ : 1.49–1.66 (m, 2H), 1.85–2.04 (m, 2H), 2.4–2.6 (m, 2H), 2.08 (s, 3H, Me), 2.93 (s, 6H, 2Me), 4.10 (s, 5H, $\mathrm{C_5H_5}$), 3.97 (m, 1H), 4.08 (m, 1H), 4.13 (m, 2H), 4.19 (m, 2H), 4.32 (m, 1H), 4.34 (m, 1H, $2\mathrm{C_5H_4}$), 5.17 (s, 1H, CH), 6.19 (s, 1H, CH=), 6.69 (d, 2H, J 8.2 Hz), 7.14 (d, 2H, J 8.2 Hz, $\mathrm{C_6H_4}$). $^{13}\mathrm{C}$ NMR (CDCl_3) δ : 14.80 (Me), 23.23, 28.30, 28.42 (CH_2), 40.74 (2Me), 47.49 (CH), 68.75 ($\mathrm{C_5H_5}$), 68.98 ($\mathrm{C_5H_5}$), 66.51, 67.35, 68.16, 68.46, 69.45, 69.50, 69.72 (2C $_5\mathrm{H_4}$), 83.96, 91.78 (C $_{jpso}$ Fc), 112.28 (CH=), 119.46, 127.40, 129.06, 129.07 ($\mathrm{C_6H_4}$), 131.49, 137.26, 139.77, 139.78, 148.89 (C). Found (%): C, 73.11; H, 6.34; Fe, 18.20, N, 2.09. Calc. for $\mathrm{C_{37}H_{39}Fe_2N}$ (%): C, 79.92; H, 6.45; Fe, 18.33; N, 2.30.

 $1,3\text{-}Diferrocenylmethylene-2-p-dimethylaminophenyl-2-methylcyclohexane 7: orange crystals, mp 164–165 °C. ¹H NMR (CDCl₃) <math display="inline">\delta$: 1.50–1.68 (m, 2H), 1.81–2.02 (m, 2H), 2.41–2.61 (m, 2H), 2.05 (s, 3H, Me), 3.00 (s, 6H, 2Me), 4.12 (s, 5H), 4.13 (s, 5H, $2C_5H_5$), 3.87 (m, 1H), 3.95 (m, 2H), 3.96 (m, 2H), 4.03 (m, 1H), 4.39 (m, 1H), 4.40 (m, 1H, $2C_5H_4$), 6.28 (s, 2H, CH=), 6.79 (d, 2H, J 8.4 Hz), 7.24 (d, 2H, C_6H_4 , J 8.4 Hz). 13 C NMR (CDCl₃) δ : 14.13 (Me), 22.97, 28.89, 30.32 (CH₂), 40.78 (2Me), 60.38 (C), 68.74 (C_5H_5), 69.05 (C_5H_5), 66.38, 67.19, 68.12, 68.13, 68.26, 69.35, 68.66, 68.90 (2C $_5H_4$), 77.21, 91.50 (C $_{pxo}$ Fc), 112.27 (CH=), 119.45, 127.38, 129.0, 130.01 (C_6H_4), 131.02, 137.02, 137.24, 139.75, 148.79 (C). Found (%): C, 72.81; H, 6.58; Fe, 18.47, N, 2.12. Calc. for $C_{37}H_{39}$ Fe₂N (%): C, 72.92; H, 6.45; Fe, 18.33; N, 2.30.

Spiro[3-p-dimethylaminophenylferrocenylmethyl-2-methyl-2-cyclohexene-1,2'-(1,3-diferrocenyl-5-ferrocenylmethylene-1,2,3,4,5,6,7,8-octahydronaphthalene)] 8: yellow crystals, mp 241–242 °C. ¹H NMR (CDCl₃) δ : 1.30–1.85 (m, 4H), 2.42–2.83 (m, 4H), 2.88–3.22 (m, 4H), 3.71 (d, 2H, J7.2 Hz), 2.03 (s, 3H, Me), 2.92 (s, 6H, 2Me), 3.86 (t, 1H, J7.2 Hz), 4.11, 4.15, 4.16, 4.17 (s, 4C₅H₅), 4.01 (m, 2H), 4.03 (m, 2H), 4.13 (m, 2H), 4.21 (m, 2H), 4.23 (m, 2H), 4.25 (m, 2H), 4.38 (m, 2H), 4.40 (m, 2H, 4C₅H₄), 4.84 (s, 1H, CHFc), 6.27 (s, 1H, CH=), 6.56 (d, 2H, J 8.7 Hz), 6.39 (d, 2H, G₄H₄, J 8.7 Hz). 13 C NMR (CDCl₃) δ : 18.73 (Me), 22.66, 23.79, 26.16, 28.30, 32.06, 33.91, 40.88 (7CH₂), 46.35 (2Me), 41.07, 45.93, 51.85 (3CH), 48.41 (C), 68.38, 68.82, 68.84, 69.07 (4C₅H₅), 65.95, 66.33, 66.49, 66.52, 66.68, 66.70, 68.22, 68.41, 68.57, 69.29, 69.37, 69.40, 69.59, 69.64, 70.06, 71.36 (4C₅H₄), 83.92, 91.70, 92.14, 93.55 (C_{ipso}Fc), 112.97 (CH=), 128.11, 129.34, 136.11, 136.19 (C₆H₄), 130.39, 132.82, 134.86, 137.06, 137.52, 139.56, 148.54 (C). Found (%): C, 72.43; H, 5.98; Fe, 20.21, N, 1.42. Calc. for C₆₆H₆₇Fe₄N (%): C, 72.22; H, 6.15; Fe, 20.35; N, 1.28.

Spiro[2-p-dimethylaminophenyl-3-ferrocenylmethylene-2-methylcyclohexane-1,2'-(1,3-diferrocenyl-5-ferrocenylmethylene-1,2,3,4,5,6,7,8-octahydronaphthalene)] 9: yellow crystals, mp 210–211 °C. 1H NMR (CDCl $_3$) δ: 1.25–1.49 (m, 4H), 1.72–1.86 (m, 4H), 2.41–2.83 (m, 4H), 2.02 (s, 3H, Me), 2.96 (s, 6H, 2Me), 3.62 (d, 2H, *J* 6.9 Hz), 3.72 (t, 1H, *J* 6.9 Hz), 4.09, 4.12, 4.13, 4.15 (s, 4C₅H₅), 3.98 (m, 2H), 3.99 (m, 2H), 4.05 (m, 2H), 4.08 (m, 2H), 4.10 (m, 2H), 4.14 (m, 2H), 4.18 (m, 2H), 4.29 (m, 2H, 4C₅H₄), 4.92 (s, 1H, CHFc), 6.22 (s, 1H, CH=), 6.41(s, 1H, CH=), 6.63 (d, 2H, J 9.0 Hz), 6.92 (d, 2H, C_6H_4 , J 9.0 Hz). ¹³C NMR (CDCl₃) δ : 15.56 (Me), 23.78, 25.01, 26.18, 28.30, 29.14, 32.60, 34.02 (CH₂), 40.80 (2Me), 47.33, 47.97, 65.74 (CH), 48.43, 50.03 (C), 68.31, 68.71, 68.85, 69.27 $(4C_5H_5)$, 66.49, 66.61, 67.90, 67.15, 67.41, 68.17, 68.45, 68.57, 68.65, 68.72, 69.19, 69.40, 69.65, 70.12, 70.74, 71.30 (4C₅H₄), 83.93, 90.67, 92.14, 93.52 (C_{ipso}Fc), 112.15, 117.60 (2CH=), 128.11, 129.87, 136.10, 136.20 (C₆H₄), 131.09, 131.12, 134.87, 139.05, 140.83, 148.60 (C). Found (%): C, 72.11; H, 6.23; Fe, 20.56, N, 1.05. Calc. for C₆₆H₆₇Fe₄N (%): C, 72.22; H, 6.15; Fe, 20.35; N, 1.28.

 $\begin{array}{l} \text{$I$-p$-Dimethylaminophenylferrocenylmethyl-$3-ferrocenylmethylene-$2-$[2-ferrocenyl-$2-(3-ferrocenylmethylene-$2-methylcyclohex-$1-enyl$)]ethylcyclohexene $$\mathbf{10}$: orange oil, 1H NMR (CDCl_3) δ: $1.26-1.49 (m, 4H), $1.72-1.86 (m, 4H), $2.52-2.71 (m, 4H), $3.20 (d, 2H, J-9.1 Hz), $3.85 (t, 1H, J-9.1 Hz), $2.03 (s, 3H, Me), $3.02 (s, 6H, 2Me), $4.74 (s, 1H, CHFc), $4.11, $4.13, $4.16, $4.17 (s, $4C_5H_5), $3.99-4.29 (m, 16H, $4C_5H_4), $6.24 (s, 1H, CH=), $6.31 (s, 1H, CH=), $6.62 (d, 2H, J-8.3 Hz), $6.79 (d, 2H, $C_6H_4, J-8.3 Hz). 13C NMR (CDCl_3) δ: $18.74 (Me), $19.40, $20.01, $21.35, $24.93, $26.10, $27.18, $30.83 (CH_2), $41.08 (2Me), $47.30, $48.56 (CH), $68.41, $68.56, $68.85, $69.70, $69.41, $70.04, $70.31, $70.50, $70.72, $71.26, $71.35 (4C_5H_4), $83.81, $83.86, $83.92, $92.14, $(C_{ipso}Fc), $112.15 (CH=), $113.60 (CH=), $128.10, $129.87, $130.39, $136.19 (C_6H_4), $129.80, $130.38, $131.20, $131.22, $134.86, $136.20, $138.60, $147.68 (C). Found (%): $C, $72.36; $H, $5.91; $Fe, $20.39, $N, $1.41. Calc. for $C_{66}H_{67}Fe_4N (%): $C, $72.22; $H, $6.15; $Fe, $20.35; $N, $1.28. $$} \end{tabular}$

Scheme 3

isolated in just one diastereoisomeric form. However, their spatial structures are not established yet.

The parameters of the ^1H NMR spectra (number of proton signals, values of chemical shifts and of spin–spin interaction constants) for the aliphatic and olefinic protons in compounds **3–13** confirm the suggested chemical structure of these compounds. Additional information on the structure of compounds **8–13** is obtained from the ^{13}C NMR spectra. The presence of four quaternary carbon atom signals in the ferrocenyl fragments of compounds **8–13**, together with the signals from four C_5H_5 groups, unambiguously prove the formation of dimers. The presence of C_{spiro} signals confirms the suggested cyclic structure of compounds **8**, **9**, **12** and **13**. The number of ^{13}C NMR signals from the C, CH, CH₂ and Me groups in compounds **6–13** correspond to their chemical structure.§¶

The formation of compounds 6 and 7 (products of alkylation of N,N-dimethylaniline) is sufficiently evident and does not require any additional justification. The existence of compounds 8-10 is explained well by the schemes discussed in refs. 1-12, which include the following stages:

- 1) deprotonation of the starting carbocation 3 *via* the intermediate formation of s-*cis*-diferrocenyltriene 14 [Scheme 5, (a)];
- 2) formation of a linear dimeric cation **15** due to the addition of carbocation **3** to the triene **14** at the free methylene group [Scheme 5, (b)];
- 3) formation of the cyclic allyl cation **16** by intramolecular alkylation of cation **15** [Scheme 5, (c)].

(a)
$$\frac{\text{DMA}}{\text{-H}^+} \qquad \begin{bmatrix} \text{CH}_2 \\ \text{FcHC} \end{bmatrix} \text{CHFc} \\ 14 \end{bmatrix}$$

 $DMA = C_6H_5NMe_2$

15

Scheme 5

We believe that in this reaction, the alkylation of N,N-dimethylaniline at the para-position by carbocations **3**, **15**, **16a** and **16b**, and deprotonation of the same cations by a base, occur competitively, resulting in the formation of a mixture of all possible reaction products **6–13**. We failed to detect the presence of the triene **14** in this process, most likely due to its low stability. However, we isolated the cyclodimer **12**, which is a classic [4+2]-cycloaddition adduct of the Diels-Alder type.

Thus, these results unambiguously confirm the previously suggested scheme¹⁻¹² for the nonsynchronous cationic cyclodimerization of buta-1,3-dienes.

 $\begin{tabular}{ll} $1,$ 3-Diferrocenylmethylene-2-[2-ferrocenyl-2-(3-ferrocenylmethylene-2-methylcyclohex-1-enyl)] $ethylidenecyclohexane 11: orange crystals, mp 226–227 °C. $^1H NMR (CDCl_3) 5: $1.30-1.65 (m, 4H), $1.83-2.10 (m, 2H), $2.21-2.40 (m, 2H), $2.51-3.05 (m, 4H), $1.76 (s, 3H, Me), $4.52 (d, CHFc, J 8.2 Hz) $4.02, $4.12, $4.15, $4.17 (s, $4C_5H_5), $3.62 (m, 2H), $3.78 (m, 2H), $3.87 (m, 2H), $3.90 (m, 2H), $4.30 (m, 4H), $4.35 (m, 4H, $4C_5H_4), $6.16 (d, $1H, CH=, J 8.24 Hz), $6.32 (s, $1H, CH=), $7.35 (s, $2H, CH=). Found (%): $C, $71.43; $H, $5.56; Fe, $23.03. Calc. for $C_{58}H_{56}Fe_4$ (%): $C, $71.34; $H, $5.78; Fe, $22.88. \end{tabular}$

 $Spiro[2,6-diferrocenylmethylenecyclohexane-1,2'-(1-ferrocenyl-5-ferrocenylmethylene-1,2,3,4,5,6,7,8-octahydronaphthalene)] \ \ 12: \ yellow \ crystals, \ mp 236–237 °C. ¹H NMR (CDCl_3) \delta: 1.80–2.00 (m, 4H), 2.12–3.15 (m, 12H), 4.21 (s, 1H, CHFc), 4.05, 4.06, 4.09, 4.13 (s, 4C_5H_5), 3.96 (m, 1H), 3.98 (m, 1H), 4.01 (m, 1H), 4.02 (m, 1H), 4.11 (m, 2H), 4.14 (m, 1H), 4.16 (m, 2H), 4.18 (m, 4H), 4.24 (m, 1H), 4.31 (m, 1H, 4C_5H_4), 5.56 (s, 1H), 5.91 (s, 1H), 6.15 (s, 1H, CH=). ¹³C NMR (CDCl_3) \delta: 22.68, 23.55, 26.13, 26.92, 28.19, 29.58, 31.88, 33.56 (CH_2), 46.55 (c), 52.28 (CHFc), 68.73, 68.87, 69.00, 69.05 (4C_5H_5), 65.59, 67.42, 67.48, 67.68, 67.75, 67.79, 67.83, 68.02, 68.11, 68.78, 68.96, 69.19, 69.26, 69.28, 69.32, 69.40, 69.64 (4C_5H_4), 83.88, 84.08, 84.28, 89.32 (C_{ipso}Fc), 116.48, 117.71, 118.78 (3CH=), 129.36, 135.60, 136.49, 144.02, 145.43 (C). Found (%): C, 71.49; H, 5.52; Fe, 23.01. Calc. for C₅₈H₅₆Fe₄ (%): C, 71.34; H, 5.78; Fe, 22.88.$

Spiro[3-ferrocenylmethylene-2-methylenecyclohexane-1,2'-(1,3-diferrocenyl-5-ferrocenylmethylene-1,2,3,4,5,6,7,8-octahydronaphthalene)] 13: yellow crystals, mp 262–263 °C. ¹H NMR (CDCl₃) δ : 1.68–2.06 (m, 4H), 2.18–2.42 (m, 2H), 2.51–2.74 (m, 4H), 2.78–2.86 (m, 2H), 3.09 (d, 2H, J 6.1 Hz), 4.08 (t, 1H, J 6.1 Hz), 4.17 (s, 1H, CHFc), 4.04, 4.05, 4.15, 4.18 (s, 4C₃H₅), 3.63 (m, 1H), 3.74 (m, 2H), 3.78 (m, 1H), 3.82 (m, 1H), 3.87 (m, 1H), 3.96 (m, 2H), 4.22 (m, 2H), 4.26 (m, 1H), 4.30 (m, 1H), 4.36 (m, 2H), 4.44 (m, 1H), 4.49 (m, 1H, 4C₅H₄), 4.58 (d, 1H, CH₂–, J 1.5 Hz), 5.06 (d, 1H, CH₂–, J 1.5 Hz), 6.18 (s, 1H, CH=), 6.33 (s, 1H, CH=). 13 C NMR (CDCl₃) δ : 28.18, 29.05, 31.57, 34.35, 36.68, 47.72, 47.83 (CH₂), 52.26 (C), 65.32, 65.58 (CHFc), 68.47, 68.97, 69.19, 69.20 (4C₅H₅), 66.17, 66.58, 68.06, 68.19, 68.28, 68.31, 68.40, 68.53, 68.78, 69.09, 69.25, 69.42, 69.72, 70.01, 70.51, 72.49 (4C₅H₄), 83.06, 83.07, 83.92, 90.78 (C_{ipss}Fc), 109.52 (CH₂=), 117.76, 121.51 (CH=), 128.32, 135.86, 136.01, 141.25, 159.47 (C). Found (%): C, 71.18; H, 5.99; Fe, 23.04. Calc. for C₅₈H₅₆Fe₄ (%): C, 71.34; H, 5.78; Fe, 22.88.

References

- 1 H. M. R. Hoffmann and H. V. Ernst, Chem. Ber., 1981, 114, 1182.
- 2 H. V. Ernst and H. M. R. Hoffmann, Angew. Chem., 1980, 92, 861.
- 3 R. J. Giguere, G. Ilsemann and H. M. R. Hoffmann, J. Org. Chem., 1982, 47, 4948.
- 4 P. G. Gassman and D. A. Singleton, J. Am. Chem. Soc., 1984, 106, 6085.
- 5 P. G. Gassman and D. A. Singleton, J. Am. Chem. Soc., 1984, 106, 7993.
- 6 W. R. Roush, H. R. Gillis and A. P. Essenfeld, J. Org. Chem., 1984, 49, 4674.
- E. I. Klimova, A. N. Pushin and V. A. Sazonova, J. Organomet. Chem., 1984, 270, 319.
- 8 A. N. Pushin, E. I. Klimova and V. A. Sazonova, Zh. Obshch. Khim., 1987, 57, 1102 [J. Gen. Chem. USSR (Engl. Transl.), 1987, 57, 984].
- E. G. Perevalova, E. I. Klimova, V. V. Kryuchkova and A. N. Pushin,
 Zh. Obshch. Khim., 1989, 59, 873 [J. Gen. Chem. USSR (Engl. Transl.), 1989, 59, 770].
- E. I. Klimova, L. R. Ramirez, M. M. Garcia, N. N. Meleshonkova and A. M. Becerra, *Dokl. Ross. Akad. Nauk*, 1996, 351, 776 [*Dokl. Chem.* (*Engl. Transl.*), 1996, 351, 320].
- 11 E. I. Klimova, L. R. Ramirez, M. M. Garcia and N. N. Meleshonkova, *Izv. Akad. Nauk, Ser. Khim.*, 1996, 2743 (*Russ. Chem. Bull.*, 1996, 45, 2602).
- 12 E. G. Perevalova, A. N. Pushin, E. I. Klimova, Yu. L. Slovokhotov and Yu. T. Struchkov, *Metalloorg. Khim.*, 1989, 2, 1405 (*Organomet. Chem. USSR*, 1989, 2, 745).
- 13 V. N. Postnov, E. I. Klimova, M. M. Garcia and N. N. Meleshonkova, J. Organomet. Chem., 1994, 476, 189.
- 14 V. N. Postnov, E. I. Klimova, A. N. Pushin and N. N. Meleshonkova, Metalloorg. Khim., 1991, 4, 116 (Organomet. Chem., 1991, 4, 61).
- V. N. Postnov, E. I. Klimova, N. N. Meleshonkova and M. M. Garcia, *Dokl. Ross. Akad. Nauk*, 1992, 326, 113 [*Dokl. Chem. (Engl. Transl.*), 1992, 326, 184].
- 16 V. N. Postnov, E. I. Klimova, N. N. Meleshonkova and M. M. Garcia, J. Organomet. Chem., 1993, 453, 121.
- 17 M. J. A. Habib, J. Park and W. E. Watts, J. Chem. Soc. C, 1970, 2556.
- 18 W. E. Watts, J. Organomet. Chem., 1979, 17, 399.
- 19 M. Salisova, M. Puciova, V. N. Postnov and S. Toma, Chem. Papers, Chem. Zvesti, 1990, 44, 201.

Received: Moscow, 7th July 1998 Cambridge, 29th September 1998; Com. 8/05572F